171. Nuclear Quadrupole Resonance and Stereochemistry 11. Vicinal *cis-* **and trans-Dichloro Derivatives of Carbocyclic Systems**

by **Ziba Ardalan** and **Edwin A. C. Lucken**

Département de Chimie Physique, Section de Chimie de l'Université de Genève 30, quai de 1'Ecole de Mddecine, 1211 Geneve **3**

and

S. Masson

Département de chimie, Université de Caen, Caen 14, France

(11. IV. **73)**

Summary. The 36Cl quadrupole resonance frequencies **of** sets of isomeric vicinal dichloro derivatives of carbocyclic molecules are presented. In all cases except one - *cis-* and trans-1, 2-dichloro-acenaphthene - the configuration has only a small effect on the resonance frequency. This implies that the frequency-differences in cyclic a-chloroethers reported in Part I of this series **[l]** are indeed due to a specific interaction with the oxygen atom. The difference between the acenaphthenes may be due to hyperconjugation between the C-Cl bond and the aromatic system.

In the first paper in this series **[l]** it was shown that the 35Cl NQR frequency of cyclic a-chloro ethers depends very markedly on the configuration, (axial or equatorial) of the carbon-chlorine bond. Most of the compounds whose quadrupole resonance spectra were reported therein contained either vicinal dichloro groups or a polar substituent in a vicinal position with respect *to* the nucleus under study so that at least a part of the effects reported in **[l]** could arise from the relative positions of the two vicinal groups. In this paper we report the ^{35}Cl NQR frequencies of a number of 1,2-dichloro derivatives of carbocyclic systems of known configuration and in the light of these and of other previously reported results, attempt to estimate the magnitude of such an effect.

Experimental. Instrumentation, see [l].

Preparation: trans- (I) and *cis-dichlorocycloheplane* (11) *[Z],* trans- (111) and cis-dichlorocyclooctane (IV) [3], exo, exo-2,3-dichloro-exo, exo-5,6-dimethoxycarbonyl-bicyclo[1.2.2]heptane [4] (V), exo, endo-2,3-dichloro-exo, *exo-5,6-dimethoxycarhonyl-bicyclo[7* .Z.Z]heptane (VI), [4], **exo,** exo-2,3 dichloro-endo, endo-5,6-dimethoxycarbonyl-bicyclo[1.2.2]heptane (VII) [4], exo, exo-2,3-dichloroendo, *endo-5,6-dicurboxy-bicyclo[l.2.2]keptane* (VIII) [4], exo, exo-2, *3-dichloro-bicyclo[7.2.2]heptane* (IX) , exo, exo-3, 5-dichloro-tricyclo $[2.2.1.0^{2,6}]$ heptane (XIV) [5], *trans-9, 10-dichloro-decalin* (XX) [5], d. 1-7.2-dichlorosuccinic anhydride (XIV) *[6],* trans- and *cis-7,2-dichlorohenzocyclohutelze* (XV & XVI) **[7],** trans- and *cis-7,2-dichZoroacenaphthene* (XVII & XVIII) *[S]* were prepared by previously published methods, meso dichlorosuccinic acid (VIII) was a commercial product and the *d.l* acid (XII) was prepared from XIV by hydrolysis.

We thank Dr. *C.A.* de *Meij* for kindly supplying the le, *Ze,* 3e, 4e, 5e, 6e-hexachlorophenylcyclohexane **(X) [9]** and la, Za, 3e, 4e, 5e, 6e-hexachlorophenylcyclohexane (XI) [9] and Dr. Kalvoda of CIBA-GEIGY, Basel for the four steroids: 3β -acetoxy-5,6 β -dichloro-5x-androstane-17one (XXI), 3β-acetoxy-5-chloro-6β-hydroxy-5x-androstane-17-one (XXII), 3β-acetoxy-5-chloro-6β, *19-epoxy-5sc-androstane-77-one* (XXIII) and *6cc-chloro-4-ene-androstane-3,~7-d~one* (XXIV).

Results and Discussion. - Table 1 shows the ³⁵Cl NQR. frequencies of the various dichloro compounds I-XXIV. It is unfortunate that we have been unable, despite repeated efforts, to obtain any resonances from either cis- or trans-1,2-dichlorocyclohexane which would have been the ideal system with which to compare the dioxanes and tetrahydropyran derivatives. It is further regrettable that the crystal structures of only three of these compounds X [10]; XVI [11] and XVIII [12] have been determined. In agreement with this the six resonance frequencies of X and the two resonances of XVI show that these molecules have lost their plane of symmetry on crystallisation.

The measurements on the hexachlorophenylcyclohexanes extend those already available for the hexachlorocyclohexanes themselves. These have been the object of extensive studies which have allowed the assignment of the resonance frequencies to individual chlorine atoms [13]-[16]. The assignments are not absolutely certain but they seem to indicate that on the whole axial chlorine substituents have their resonance frequencies about 0.5 **MHz** lower than the corresponding equatorial ones. It does not appear to be possible to narrow down the range by taking into account such things as the relative orientation of the nearest neighbours. Although no experimental attempt was made to assign the resonance frequencies in the case of the **hexachlorophenylcyclohexanes** the difference between X, where all the chlorine atoms are in the equatorial configuration, and XI where two chlorine atoms have gone over to the axial one supports this conclusion. However, it must be stressed that this difference is of the same order of magnitude as the frequency shifts brought about by intermolecular field-gradients.

Turning now to the seven and eight membered rings the total spread in frequencies for I and I1 is only 0.77 MHz and for I1 and IV even less, 0.23 MHz. Even though the geometry of these rings is unknown the dihedral angle between the C-Cl bonds is certainly different and almost certainly smaller in the *cis* than the trans derivatives. Again in the dichlorosuccinic acids the crystal structure of neither is known but the resonance frequencies have a spread of only 0.39 MHz. However, the large difference between the frequency of XI1 and the corresponding anhydride XIV where the two chlorine atoms are necessarily *trans* to each other may be in part due to a conformational change.

Although once again the crystal structures are unknown the derivatives of [1.2.2]bicycloheptane have a molecular skeleton of sufficient rigiditiy for it to be possible to estimate the relative orientation of the chlorine atoms with fair certainty. In V they are no doubt essentially in the eclipsed configuration while in the trans compound VI the chlorine atoms eclipse the corresponding hydrogen atoms. In **V** the two chlorine atoms are probably but not necessarily equivalent in the free molecule in which case the two frequencies differing by 0.1 MHz must be ascribed to inequivalence induced by crystallisation; in VI however the two chlorine atoms are inequivalent even in the free molecule and this inequivalence with respect to the methylene bridge produces a change of only 0.28 MHz while the difference in the average frequencies of V and VI is only 0.75 **MHz.** It would be interesting to determine the effect of exo or endo configuration directly by comparing corresponding exo and endo-cis dichlorides or the *exo* and *endo* chlorides but we have not so far been successful in observing resonances in appropriate sets of compounds. However, the effects which we do observe here are comparable with those produced by a configurational change a more remote part of the molecule (compare V with VII and VII with VIII) and by a change in crystal structure structure of the same molecule *(e.g.* p-dichlorobenzene [17] at 77K; a-phase 34.775 **MHz,** @-phase 34.760 **MHz** y-phase 35.208 MHz).

Compounds XV, XVI, XVII and XVIII are, with the dichlorosuccinic acids XII, XI11 and anhydride XIV, examples of molecules in which the C-C1 bond is adjacent to an unsaturated system. The frequency difference between XV and XVI is comparable with those observed previously but XVII and XVIII differ by 2.4 MHz. The crystal structure of the latter compound has recently been determined and shows that the C_8 -C₁-Cl fragment lies in a plane which is almost perpendicular to the aromatic plane [12]. The structure of the *cis* isomer is unknown but repulsion between the two neighbouring chlorine atoms would in this case presumably force the C_8 - C_1 -Cl plane to be more nearly parallel to the aromatic plane. An explanation of the frequency difference may then lie in an electron-releasing hyperconjugation which would of course be at its maximum for the *trans* isomer, XVIII. However, this point will be taken up in a later paper in this series in which such hyperconjugation will be discussed specifically.

Also included in Table 1 are the results for compounds XIX-XXIV which do not make up sets of isomers. It is interesting to note that although the resonance frequency of a chlorine linked to a tertiary carbon atom is in general lower than that attached to a secondary carbon atom (see for example XXI) the resonance frequency of XX is similar to that of compounds I-IV.

The similarity of the frequencies of the 5α chlorine atom in XXI, XXII and XXIII shows that the effect of a *trans* RO group is similar to that of a *trans* C1

Compound	$v_{\rm Q}$ (MH _z)	Compound	$v_{\rm Q}$ (MH _z)
I	33,068: 33,439	XII	37,745; 37,866
и	32,946; 33,719	XIII	38.135
Ш	33.810	XIV	38.749; 39.187
IV	33,815:34,040	XV	33,915; 33,958
v	35,234; 35,335	XVI	34,603; 34,730
VI	34,403; 34,689	XVII	33,323
VII	34,817: 34,888: 35,164: 35,164	XVIII	35,652; 35,836
VIII	34.977: 35.119	XIX	33.057: 33.163
IX	34.580	XX	33,279
x	36,886: 37,089: 37,287:	$_{\rm XXI}$	33,594; 34,520
	$37,593 \cdot 37,593$, $37,730$	XXII	33,069
XI	36,000; 36,287; 36,407; 36,443;	XXIII	33,152
	36.732: 36.854: 36.891: 36.940: 37, 143; 37, 382; 37, 456; 37, 633	XXIV	33,710

Table 1. *35Cl* NQX *resonance frequencies (MHz at 77K) of uicinal dichloro compounds*

group. XXIV is the only one of these four compounds having an equatorial chlorine substituent; the structures of XXI and XXIV are however too different for the frequencies of the 6α and the 6β chlorine atoms to be compared in the present context. All these observations strongly indicate that in the absence of a neighbouring heteroatom or conjugating group the relative configuration of two C-Cl bonds affects

XXIV

cì.

 $CH₃COO$.

Ċί

XXIII

the 35Cl resonance frequency by less than 0.8 **MHz** and hence confirms that the large difference between axial and equatorial chlorine atoms in α chloroethers reported in **[l]** arises from a specific interaction with the oxygen atom.

REFERENCES

- [l] *2. Ardalan* & *E. A. C. Lucken,* Helv. *56,* 1715 (1973).
- [2] *S. Masson & A. Thuillier, C. r. hebd. Séances Acad. Sci. <i>C, 1971 251.*
- [3] *S. Masson & A. Thuillier*, Bull. Soc. chim. France 1972, 4592.
- **[4]** *S. Masson* & *A. ThuiZlier,* Bull. SOC. chim. France 1977, 3508.
- [5] *S. Masson & A. Thuillier*, Bull. Soc. chim. France 1969, 4368.
- [6] *M. Jones, .Jr.* & *R. H. Leuin,* J. Amer. chem. SOC. *91,* 6411 (1969).
- i7j *A. Michael,* J. prakt. Chem. *52,* 292 (1895).
- [8] S. *J. Cvistol, F. R. Stermitz* & *P. S. Ramey,* J. Amer. chem. SOC. 78, 4939 (1956).
- [9] **C.** *A. de Meij* & *E. C. Kooyman,* Rec. Trav. chini. Pays-Bas 97, 357 (1972).
- [lo] C. *A. de Meij, A. J. de Kok, J. Lugtenburg* & *C. Romers,* Rec. Trav. chim. Pays-Bas 91, 383 (1972).
- [11] *G. L. Hardgrove, L. K. Templeton & D. H. Templeton, J. phys. Chemistry, 72, 668 (1968).*
- [12] *M.-T. Le Bihan* & *M.-C. Perucaud,* Acta Cryst. **13** 28, 629 (1972).
- [13] *Y. Morino,* I. *Migawa, T. Chzba* & *T. Shimozawa,* J. chem. Physics *25,* 185 (1956).
- **[14]** *Y. Morino, M. Toyama* & *K. Iron,* hcta Cryst. *16,* 129 (1969).
- [15] G. *Soda, M. Toyavna* & *Y. Morino,* Bull. chem. Soe. Japan *38,* 1965 (1965).
- **[16]** *Y. Morino, T. Chiha, T. Shinozazua, M. Toyarna* & *K. Ito,* Revue Universelle des Mines XV, **3.** *(1959).*
- [17] *G. G. Movoss* & *H.* S. *Story,* J. chem. Physics, *45,* 3370 (1966).

172. Nuclear Quadrupole Resonance and Stereochemistry 111. Trichloromethyl Derivatives

by **Ziba Ardalan** and **Edwin A. C. Lucken**

Département dc Chimie Physique Section de Chimie de l'Université de Genève 30, quai de 1'Ecole de Me'decine, 1211 Genave *4*

(11. IV. 73)

Summary. ³⁵Cl nuclear quadrupole resonance frequencies are reported of the chlorine atoms in the trichloromethyl group of benzotrichlorides and trichloromethyl derivatives of heterocyclic molecules. They are compared with prcviously reportcd results for the same **group** attached to other planar conjugated radicals. In such compounds the three chlorine atoms cannot be equivalent and all the results are discussed from the point of view of possiblc orientation-dependant hyperconjugation between the C-C1 bonds and the conjugated moiety, particularly with reference to the markcd effects observed in trichloromethyl ethers reported in part **I** of this series. In the bcnzotrichloride and indeed most of the compounds discussed such effects are small.

In part I of this series [l] it was shown that the 35Cl resonance frequency of a cyclic α -chloro ether had a marked dependence on the axial or equatorial nature of the carbon-chlorine bond. In part **I1** *[Z]* it was shown that there was no such marked orientation-dependence in saturated carbocyclic systems and it may thus be concluded that the effect in the ethers is due to a specific interaction between the C-C1 bond and the oxygen atom. **A** model (no doubt much oversimplified), of such an